Kinetic Studies of the Proton-transfer of the Bivalent Anions of ortho-Hydroxy Azo Compounds in Dioxane-Water Media[†]

Noboru Yoshida and Masatoshi Fujimoto*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060

(Received November 13, 1978)

Kinetics of the proton-transfer reactions in dioxane–water media between hydroxide ion and the bivalent anions of 4-(2,4-dihydroxyphenylazo)benzenesulfonic acid (TPO) and 7-hydroxy-8-phenylazo-1,3-naphthalenedisulfonic acid (HPN) were studied by means of the temperature-jump method. For the change in the mole fraction of dioxane from 0 to 0.174, the acid-dissociation constant, $K_a^{\circ}(s)$, was found to decrease from 1.07×10^{-11} to 5.25×10^{-14} mol dm⁻³ for HPN and from 1.32×10^{-12} to 7.08×10^{-15} mol dm⁻³ for TPO.

One of the most pronounced and general features in the chemical effects caused by the change in the solvent composition in binary mixed solvents is the change in the degree of ionic dissociation of weak electrolytes. Dependence of the acid-dissociation constants on the solvent composition is explained in terms of both the dielectric constant of the medium and the solute-solvent interactions.¹⁾

In dioxane-water media the decrease in the aciddissociation constants of the bivalent anions of ohydroxy azo compounds such as HPN and TPO is mainly due to the decrease in the dielectric constant of the medium.

In the present study we have found that the recombination rate constant, k_f , for the proton-transfer reac-

$$\mathrm{HA^{2-} + OH^{-}} \underset{k_{\mathrm{r}}}{\overset{k_{\mathrm{f}}}{\Longleftrightarrow}} \mathrm{A^{3-} + H_{2}O}$$

tion between hydroxide ion and HPN and TPO decreases with decrease in the dielectric constant of the medium, while the backward rate constant, k', is influenced only a little by the change in dielectric constant. Based on the kinetic and the equilibrium data in dioxane—water media, the authors aimed to elucidate the solvent effects on the proton-transfer reaction of HPN and TPO.

Experimental

Water was deionized and distilled. Dioxane was distilled over sodium and used without further purification.²⁾ HPN and TPO (Wako) were recrystallized from an ethanol-water solution.

Kinetic measurements were carried out at 25 °C; I=0.1 mol dm⁻³ (KNO₃) with a Union Giken co-axial cable temperature-jump apparatus Model RA-105 under compressed nitrogen gas at ca. 2 atm to avoid cavitation upon very fast

Table 1. Values of $\log U_{\rm H}$ and $pK_{\rm w}^{\rm c}$ at various dioxane contents, 25 °C and $I\!=\!0.1\,{\rm mol\,dm^{-3}}$ (KNO₃)

$x_{\rm diox}$	$\log U_{ m H^{a)}}$	$\mathrm{p}K_\mathrm{w}^\mathrm{c}\!=\!-\log{(K_\mathrm{w}^\mathrm{c}/\mathrm{mol^2dm^{-6}})}$
0.000	-0.07	13.73, 13.78b)
0.023	-0.06	14.05
0.050	-0.09	14.27
0.083	-0.11	14.54
0.128	-0.13	14.97
0.174	-0.13	15.31, 15.38°)

a) $\log U = pC_H - pH^*$, where pH* denotes the pH-meter reading. b) See Ref. 8. c) See Ref. 9.

temperature rise. A Hitachi EPS-3T recording spectrophotometer was used in the equilibrium measurements.

The measurements of pH in the mixed solvent were reported in the previous paper.³⁾ The apparent ionic product $K_{\mathbf{v}}^{c} = [H] \cdot [OH]$ of the water in dioxane-water was obtained with a Hitachi-Horiba pH-meter F-7ss equipped with a glass electrode 1026A and Ag-AgCl reference electrode type 2010-05T. The values of $pK_{\mathbf{v}}^{c}$ are summarized in Table 1. The function $\log U_{H}$ is defined as $\log U_{H} = pC_{H} - pH^{*}$, where C_{H} denotes the analytical concentration of proton, and pH* pH-meter readings.

Results and Discussion

The final step of the acid-dissociation of HPN and TPO can be expressed by

$$HA^{2-} \stackrel{K_a^c}{\rightleftharpoons} A^{3-} + H^+. \tag{1}$$

The acid-dissociation constant, K_a^c , is expressed in terms of the absorbance and the equilibrium concentration of proton, $\overline{C}_{\rm H}$,

$$C/\Delta A = 1/\Delta \varepsilon + \bar{C}_{\rm H}/(\Delta \varepsilon \cdot K_{\rm a}^{\rm c})$$
 (2)

where $\Delta A = A - A'$, $\Delta \varepsilon = \varepsilon_{\rm A} - \varepsilon_{\rm HA}$, and $A' = \varepsilon_{\rm HA} C$, ε is the molar absorption coefficient, A the absorbance at the wavelength of the base form of HPN or TPO, and C the total concentration of the Brønsted acid.

The plot of $C/\Delta A$ against $\overline{C}_{\rm H}$ gives straight lines for each solvent composition, yielding $\Delta \varepsilon$ and $K_{\rm a}^{\circ}(s)$ from the intercept and the slope, respectively. In Fig. 1 the acid-dissociation constants determined spectrophotometrically are plotted against the mole fraction of dioxane, $x_{\rm dlox}$. Increase in the dioxane content in the medium, viz, the decrease in the dielectric constant of the medium leads to a decrease in the dissociation constant of HA^{2-} . Such dependency of $K_{\rm a}^{\circ}(s)$ on the solvent composition has also been observed in the case

[†] Presented in part at the 26th Annual Meeting on Coordination Chemistry, Sapporo, August 30, 1976, Abstract p. 252 and at the 27th Annual Meeting on Coordination Chemistry, Matsumoto, September 28, 1977, Abstract, p. 233.

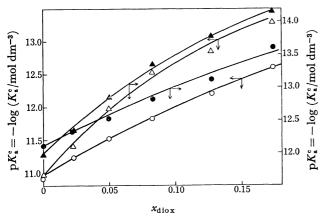


Fig. 1. Dependence of the $pK_a^c(s)$ and $pK_a^c(k)$ on the mole fraction of dioxane at 25 °C and I=0.1 mol dm⁻³ (KNO₃). (1) HSN: \bigcirc the plot of $pK_a^c(k)$ vs. x_{dlox} ; \triangle the plot of $pK_a^c(s)$ vs. x_{dlox} . (2) TPO: \blacksquare the plot of $pK_a^c(k)$ vs. x_{dlox} ; \triangle the plot of pK (s) vs. x_{dlox} .

of the univalent anion of 4-(p-nitrophenylazo)-resor-

The proton-transfer reaction between hydroxide ion and the bivalent Brønsted acids, HA²⁻, is expressed by

$$HA^{2-} + OH^{-} \xrightarrow{k_{f}} A^{3-} + H_{2}O$$
 (3)

with the equilibrium constant $K_b^c = k_r/k_r' = \overline{C}_A/(\overline{C}_{HA} \cdot \overline{C}_{OH})$, where $k_r' = k_r(H_2O)$. The relaxation time, τ , for Reaction 3 is related to the rate constants as follows.

$$\tau^{-1} = k_{\rm f}(\bar{C}_{\rm HA} + \bar{C}_{\rm OH}) + k_{\rm r}'. \tag{4}$$

If the equilibrium concentration of hydroxide ion is much larger than that of the bivalent anion, Eq. 4 is approximated to $\tau^{-1} = k_{\rm f} \overline{C}_{\rm OH} + k_{\rm r}'$ (Fig. 2). The rate constants and equilibrium constants at each solvent composition are summarized in Tables 2 and 3. In

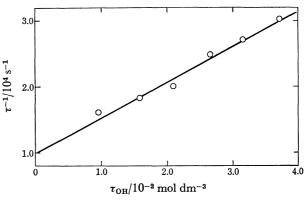


Fig. 2. Plot of the reciprocal relaxation time vs. the equilibrium hydroxide ion concentration at $x_{\rm dlox} = 0.083$ (TPO), 25 °C, and I = 0.1 mol dm⁻³ (KNO₃).

Table 2. Rate constants for the proton-transfer reaction of HSN, $HA^{2-} + OH^{-} \xrightarrow[k_r]{k_f} A^{3-} + H_2O$, at 25 °C and $I = 0.1 \text{ mol dm}^{-3}$ (KNO₃)

	$pK_a^c(s)$	$k_{\mathbf{f}}$	$k_{ m r}'$	K° _b	$pK_{a}^{c}(k)$
x dio x		10 ⁶ mol ⁻¹ dm ³ s ⁻¹	$10^{3} \mathrm{s}^{-1}$	$\mathrm{mol^{-1}dm^3}$	
0.000	10.97	6.3	8.5	741	10.9
0.023	11.40	5.8	8.5	682	11.2
0.050	11.98	5.4	8.5	635	11.5
0.083	12.52	4.9	8.0	613	11.8
0.128	12.82	4.7	8.5	553	12.2
0.174	13.28	4.2	8.5	494	12.6

Table 73. Rate constants for the proton-transfer reaction of TPO, $HA^{2-} + OH^{-} \xrightarrow{k_t} A^{3-} + H_2O$, at $I = 0.1 \text{ mol dm}^{-3}$ (KNO₃)

x _{diox}	$pK_a^c(s)^{a)}$	$\frac{k_{\rm f}}{10^5{\rm mol^{-1}dm^3s^{-1}}}$	$\frac{k'_{\rm r}}{10^3{\rm s}^{-1}}$	$\frac{K_{\rm b}^{\rm c}}{\rm mol^{-1}dm^3}$	$pK_a^c(k)$	T	Ref.
						K	
0.000	11.88 (12.20)	6.9	16	43	12.1	298	This work
		3.6	8	45		285	5
	12.00	8.8	6.5	135		288	6
	12.01b)	8.6	_			298	7
0.023	12.34 (12.24)	6.4	12	53	12.3	298	This work
0.050	12.85 (12.77)	5.5	8.8	63	12.5	298	This work
0.083	13.33 (13.15)	5.3	10	53	12.8	298	This work
0.128	13.77 (13.56)	4.7	6.0	78	13.1	298	This work
0.174	14.15 (14.25)	3.2	5.8	55	13.6	298	2

a) The values of pK_a^c in parentheses are obtained from the relationship, $pK_a^c = pC_H + \log [(D_B - D)/(D - D_A)]$, where D is the absorbance, subscripts A and B are for the acid and the base form of TPO, respectively. b) $K_a = a_{H^*} \cdot C_A/C_{HA'}$ where a_{H^*} is the activity of the proton.

the case of HPN, the value of $k_{\rm f}$ slightly decreases with increase in the mole fraction of dioxane, $x_{\rm diox}$, and that of $k_{\rm r}$ increases from $1.5\times10^2\,{\rm mol^{-1}}\,{\rm dm^3\,s^{-1}}$ at $x_{\rm diox}=0.174$ with increase in $x_{\rm diox}$. The value of $k_{\rm f}$ for TPO also gradually decrease with increase in $x_{\rm diox}$. The value of $k_{\rm f}$ for TPO changes quite a little.

The detailed mechanism of the proton-transfer reaction may be written as follows.^{2,3)}

$$HA^{2-} \xrightarrow[k_{21}]{k_{12}} HA^{*2-},$$
 (5a)

$$HA^{*2-} + OH^{-} \rightleftharpoons_{k_{32}} \stackrel{k_{23}}{\longleftrightarrow} HA^{*2-} \cdots (H_2O)_n \cdots OH^{-}$$
 (5b)

$$\text{HA*}^{2-}\cdots(\text{H}_2\text{O})_n\cdots\text{OH}^- \xrightarrow[k_{13}]{k_{13}} \text{A}^{3-} + \text{H}_2\text{O},$$
 (5c)

where HA²⁻ stands for the bivalent anion having an intramolecular hydrogen-bond and HA*²⁻ an intermediate species without an intramolecular hydrogen-bond. Assuming the steady state for HA*²⁻ and HA*²⁻···(H₂O)_n···OH⁻ and the relationships $k_{21}\gg k_{23}\overline{C}_{\rm OH}$ and $k_{34}\gg k_{32}$, the observed rate constants in Eq. 3 are expressed as follows.

$$k_{\mathbf{f}} = K_{12}k_{23} = (k_{12}/k_{21})k_{23} \tag{6}$$

and

$$k_{\rm r} = k_{32}/K_{34} = k_{32}/(k_{34}/k_{43}).$$
 (7)

As shown in Fig. 3 the value of $k_{\rm f}$ decreases with the decrease in the dielectric constant of the solution, while the value of $k_{\rm f}'=k_{\rm r}$ (H₂O) varies little with change in the solvent composition particularly in the case of HPN. The decrease in $k_{\rm f}$ would be mainly due to the dependence of k_{23} on the dielectric constant provided that the change in the value of K_{12} for the intramolecular process is small.³⁾ By neglecting the ionic-atmosphere term in Brønsted-Christiansen-Scatchard equation,⁴⁾ we obtain

d log
$$(k_{\rm f}/{\rm mol^{-1} \, dm^3 \, s^{-1}})/{\rm d} \, D^{-1}$$

= d log $(k_{23}/{\rm mol^{-1} \, dm^3 \, s^{-1}})/{\rm d} \, D^{-1}$

and

d log
$$(k_{23}/\text{mol}^{-1} \text{dm}^3 \text{s}^{-1})/\text{d} D^{-1} = - (z_i z_j e^2)/(kTr^*),$$
 (9)

where z_1 and z_1 represent the charge of the reactants, D is the dielectric constant of the medium, k Boltzmann's constant, T absolute temperature, r^* the phenomenological reaction distance, and e elementary charge. From the slope in Fig. 3 the value of r^* for TPO is obtained to be 23 Å and that for HPN 26 Å from the plot in lower dioxane content and 66 Å from that in higher dioxane content, respectively. Actually, however, the phenomenological reaction distance r^* should be calculated by considering the ionic strength term, leading to a smaller value for r^* . From the value of r^* there would be intervening water molecules in the encounter complex, $HA^{*2}-\cdots(H_2O)_n\cdots OH^-$.

The kinetic $pK_*^{\circ}(k)$ was derived from the following relation.

$$K_{\mathbf{a}}^{\circ}(\mathbf{k}) = K_{\mathbf{b}}^{\circ}(\mathbf{k}) \cdot K_{\mathbf{w}}^{\circ}(\mathbf{s}). \tag{10}$$

In the case of the bivalent anion of a water-soluble Brønsted acid the difference between $pK_a^*(s)$ and $pK_a^*(k)$ (Fig. 1) is large, particularly in the higher dioxane

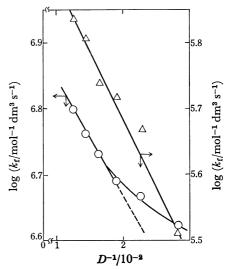


Fig. 3. Dependence of $\log k_f$ on the inverse dielectric constant of the medium. \bigcirc The plot for HSN; \triangle the plot for TPO.

content. On the other hand, in the case of the univalent anion of the sparingly water-soluble Brønsted acid such as 4-(p-nitrophenylazo)resorcinol (MAG) the difference is small.³⁾ Such difference in $pK_*^{\circ}(k)$ and $pK_*^{\circ}(s)$ would be ascribed to that in the microscopic environment around the solute such as TPO, HPN, and MAG.

The linear relationship between $\log (k_t/\text{mol}^{-1} \text{dm}^3 \text{s}^{-1})$ and pK_a for HPN is as follows (Fig. 4).

$$\log k_{\rm f} = -1.1 \times 10^{-1} \, \rm p K_a^{\circ}(k) + 8.0 \tag{11}$$

and

(8)

$$\log k_{\rm f} = -7.5 \times 10^{-2} \,\mathrm{p} K_{\rm a}^{\rm c}(\rm s) + 7.6 \tag{12}$$

On the other hand, the relationship between pK° and pK° for HSN is expressed by

$$pK_a^c = -\log k_f + \log k_r' + pK_w^c. \tag{13}$$

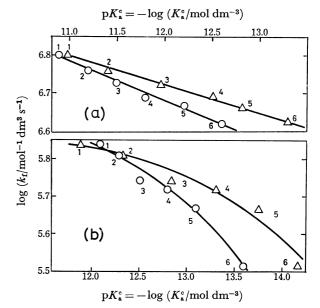


Fig. 4. Dependence of $\log k_f$ vs. $pK_a^c(k)$ and $pK_a^c(s)$ for HSN (a) and TPO (b): \bigcirc , $\log k_f$ vs. $pK_a^c(K)$. \triangle , $\log k_f$ vs. $pK_a^c(s)$. x_{diox} : (1) 0.000, (2) 0.023 (3) 0.050, (4) 0.083, (5) 0.128, and (6) 0.178.

From the plot of pK_w^c against pK_a^c for HPN, the following empirical equations are obtained.

$$pK_w^c = 0.95 pK_a^c(k) + 3.38$$
 (14)

$$pK_{w}^{c} = 0.64 pK_{a}^{c}(s) + 6.72$$
 (15)

Equations 11 and 13 gives the relationship $pK_*^c = 0.89 \, pK_*^c(k) + 8.0 - \log k_r'$ which agrees with Eq. 14, since the value of $\log k_r'$ is evaluated to be 3.93 (Table 2). Equations 12 and 13 give the relationship $pK_*^c = 0.93 \, pK_*^c(s) + 7.6 - \log k_r'$ which does not agree with Eq. 15. In the case of TPO, no linear relationships are observed (Fig. 4). The linear relationship between $\log k_r$ and pK_*^c observed for HPN is explained by the constancy of the values of k_r' with variation in solvent composition.

References

1) Ohtaki also pointed out the variation in the ionic product of solvent. See H. Ohtaki, Pure Appl. Chem. 34,

185 (1972).

- 2) N. Yoshida and M. Fujimoto, Bull. Chem. Soc. Jpn., 49, 1557 (1976).
- 3) N. Yoshida and M. Fujimoto, Bull. Chem. Soc. Jpn., 50, 1328 (1977).
- 4) G. Scatchard, Chem. Rev., 10, 229 (1932); J. A. Christiansen, Z. Phys. Chem., 113, 35 (1924).
- 5) M. Eigen and W. Kruse, Z. Naturforsch., Teil B, 18, 857 (1963).
- 6) M. C. Rose and J. Stuehr, J. Am. Chem. Soc., **93**, 4350 (1971).
- 7) J. L. Haslam and E. M. Eyring, J. Phys. Chem., 71, 4470 (1967).
- 8) At I=0.1 mol dm⁻³ (NaClO₄) and 25 °C. G. K. Pagenkopf and D. W. Margerum, J. Am. Chem. Soc., **90**, 6963 (1968).
- 9) S. Takamoto, Q. Fernando, and H. Freiser, Anal. Chem., 37, 1249 (1965).